تبلیغات متنی
چاپ پرچم
آزمون علوم پایه دامپزشکی
ماسک سه لایه
Hookah Shisha Tobacco
مربی سگ
خرید از چین
لوازم یدکی ال ۹۰
گاوصندوق
Barabas Ropa de hombre
مبلمان اداری کلاسیک
گاوصندوق
مبلمان اداری کلاسیک
لوازم تاتو
فروشگاه مکمل های غذایی
مبلمان اداری کلاسیک
میز اداری مدرن
گاوصندوق خانگی
ارسال اس ام اس انبوه
میز مدیریتی سلطنتی
خرید بک لینک قوی
نردبان خانگی
تور ترکیه
صندلی نیلپر
تورآنتالیا
خرید ملک در ترکیه
صندلی اداری گلدسیت
قیمت لوله استیل
میز اداری مدرن
تجهیز صنعت
3D Printing With Tungsten & Iron

thomaschap

thomaschap

3D Printing With Tungsten & Iron

3D printing with metals is not new. But the range of metals that can be 3D printed is increasing quickly. We recently told you about a laboratory breakthrough that allows 3D printing of liquid metal structures at room temperature, something that 360 DTH hammer makes many readers think of the film, Terminator 2: Judgment Day. Closer to immediate and useful reality, industrial 3D printer supplier ExOne has added iron infiltrated with bronze, and bonded tungsten, to the range of metal and ceramic powders that can be used with its multi-material M-Flex machines.

One of the main reasons the company has seen demand for using iron to 3D print parts instead of its existing stainless steel is its lower cost, Rick Lucas, ExOne’s CTO, told Design News in an interview. Iron costs about 25 percent as much as stainless steel. The cost ratio of materials to total part cost also depends on part size: When making parts smaller than the size of the human hand, materials cost is only about 10 to 15 percent of total part cost.

But as parts get larger, materials can be more than 30 percent of the cost. "That's significant," Lucas told us. "You won't find stainless steel in a lot of industrial applications like automotive parts, machine tools, heavy equipment, and support structures. That's where iron is needed, for both cost and strength." Instead, the main use for stainless parts now by ExOne's customers is impellers and abrasive-type pumping applications.

To develop bonded tungsten for 3D printing, ExOne collaborated with a contract design and manufacturing company called rapid prototype + manufacturing (rp+m). rp+m provides rapid prototyping, additive manufacturing, rapid manufacturing, and 3D printing and scanning in-house. In this project, the two companies focused on the design of 3D-printed products for use in protecting people and their environments from ionizing radiation. Along with its partner, Radiation Protection Technologies, rp+m produces these bonded tungsten products as bundled solutions that replace lead in medical imaging and aerospace.

ExOne is also offering two new binders, sodium silicate and phenolic, as alternatives to furan. Phenolic binder is used with ceramic sand for 3D printing molds and cores, used in the sand molding and casting industry. "Depending on the shape and geometry of the part, you may need something stronger than furan," said Lucas. Phenolic creates a higher strength mold or core, allows higher heat alloys to be cast, and reduces the amount of expansion of the mold or core, improving casting quality. Customers in the hydraulic equipment, heavy equipment, and pump industries, as well as aviation and automotive, requested this new binder material. The sodium silicate binder is a greener alternative to furan, reducing fumes and gas during casting.

All of ExOne's 3D printers, including M-Flex, employ a print head that distributes the binder via jetting it into beds of specially formulated materials. The M-Flex build chamber measures 400 mm x 250 mm x 250 mm (15.7 inch x 9.8 inch x 9.8 inch), and achieves speeds of up to 30 seconds per layer. It's designed for manufacturing either short runs or prototypes of metal parts.

Currently available materials for the M-Flex include silica sand, ceramic Sandvik DTH Hammer sand, stainless steel, glass, copper, iron, and tungsten. The goal is to make at least one new material class available every six months, Lucas told us.

The company's internal Material Applications Laboratory is currently working on several other materials in different stages of development. These include alumina, silicon carbide, chromite, titanium, graphttp://leandercle.blogtez.com/post7.php

موضوع :
برچسب ها : ,
امتیاز : 4 | نظر شما : 1 2 3 4 5 6
+ نوشته شده در دوشنبه 14 تير 1400ساعت 16:10 توسط thomaschap | تعداد بازديد : 17 | |